# High Efficiency, Ultra-Low-Emission Process Heater

Department of Energy ITP Industrial Energy Systems Portfolio Review

Reston, VA

September 10, 2004

TIAX
ExxonMobil Research and Engineering
Callidus Technologies
Norton Engineering

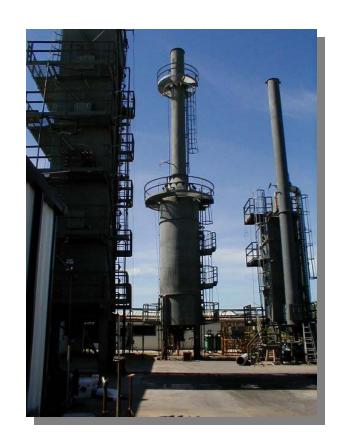






### Topics to be covered include:

- 1 Advanced Process Heater Overview
- 2 Burner Development/Demonstration
- 3 Advanced Heater Design
- 4 Technology Demonstration Plans
- 5 Project Benefits








# TIAX is leading a DOE project to develop an ultra-low-emissions, high efficiency, fired process heater.

- The development team includes ExxonMobil and Callidus Technologies.
- The project is being funded by DOE (50%) and the team (50%).
- Key technologies being developed include:
  - Ultra-low-emissions burner (< 10 ppm NO<sub>x</sub>).
  - Advanced fired heater with 95% thermal efficiency based on lower heating value (LHV)
- The project will culminate in refinery heater retrofit demonstrations of key components.
- The burner technology has already been commercialized by Callidus.







# Energy conservation and environmental compliance are key business objectives for the oil and chemicals industries.

- Existing fired heater technology is not cost effective for achieving high thermal efficiency at small to moderate duty.
  - About half of the fuel fired in process heaters in US refineries is impacted by this constraint.
- Emissions regulations for industrial facilities are tightening:
  - For example, the Texas State Implementation Plan calls for 75% overall  ${\rm NO_x}$  reduction in the Houston-Galveston area, which has 29% of US refining capacity.
- Additional benefits of the integrated system include:
  - CO<sub>2</sub> emissions reduction
  - Avoided capital costs for alternative control technologies
  - Improved reliability
  - Increased process run lengths







#### Advanced Process Heater Overview Energy Use in Process Heaters

Target applications are process heaters in refineries and chemical plants, which account for some 2000 TBtu/year - approximately 40% of US process heat energy consumption.

### **Refinery Processes**

|                          | Total Fuel<br>Consumed<br>TBtu/yr | Natural Gas<br>Consumed<br>TBtu/yr |
|--------------------------|-----------------------------------|------------------------------------|
| Atmospheric distillation | 351                               | 104                                |
| Vacuum distillation      | 102                               | 30                                 |
| Catalytic cracking       | 156                               | 46                                 |
| Hydrocracking            | 50                                | 15                                 |
| Steam reforming          | 188                               | 55                                 |
| Hydrotreating            | 206                               | 61                                 |
| Catalytic reforming      | 208                               | 61                                 |
| Thermal cracking         | 9                                 | 3                                  |
| Delayed coking           | 103                               | 30                                 |
| TOTAL                    | 1373                              | 405                                |

### **Chemicals Processes**

|                | Total Fuel<br>Consumed<br>TBtu/yr | Natural Gas<br>Consumed<br>TBtu/yr | Fraction<br>Natural Gas<br>% |
|----------------|-----------------------------------|------------------------------------|------------------------------|
| Ethylene       | 342                               | 110                                | 32                           |
| Ammonia        | 189                               | 189                                | 100                          |
| Carbon Black   | 40                                | 38                                 | 95                           |
| Methanol       | 28                                | 28                                 | 100                          |
| P-Xylene       | 25                                | 23                                 | 90                           |
| Vinyl Chloride | 17                                | 17                                 | 100                          |
| Urea           | 16                                | 16                                 | 100                          |
| Styrene        | 17                                | 13                                 | 78                           |
| Benzene        | 9                                 | 8                                  | 90                           |
| TOTAL          | 683                               | 683 442                            |                              |

Source: Gas Research Institute Report GRI-96/0353





#### Advanced Process Heater Overview Development Team Roles

We have assembled a strong team to develop and commercialize the advanced process heater technologies.

#### TIAX

- Prime contractor and DOE interface
- Combustion expertise
- Pilot scale component testing
- Computational fluid dynamic modeling

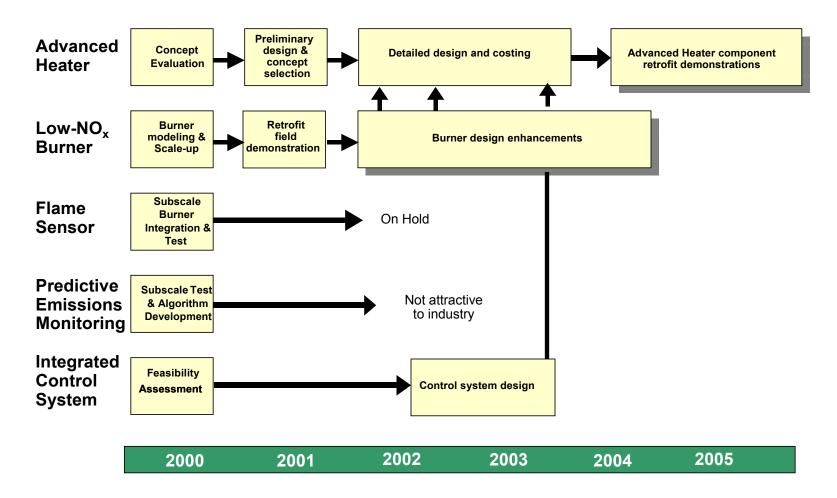
#### **ExxonMobil Research and Engineering**

- Process heater expertise
- Process sensing and control expertise
- Commercial system integration/ testing
- Field demonstration planning/execution
- Process heater commercialization

#### **Callidus Technologies**

- Burner expertise
- Commercial burner development
- · Commercial scale testing
- Burner system commercialization

#### **Norton Engineering (EMRE sub)**


- Process heater design expertise
- Control system expertise
- Heat transfer expertise
- Process heater cost estimation







#### Advanced Process Heater Overview Project Structure & Overall Schedule









#### Advanced Process Heater Overview Summary

**Goal:** To develop designs and components for an integrated process heating system that improves efficiency and reduces NO<sub>x</sub> emissions.

**Challenges:** Current combustion air preheating systems are too expensive to be installed on most fired process heaters. The use of preheated air increases emissions of NO<sub>x</sub>. Maintaining stable burner operation while achieving ultra-low NO<sub>x</sub> emission is difficult.

**Benefits:** Reduced NO<sub>x</sub>,CO<sub>2</sub> emissions and improved efficiency for refineries and chemical plants.

FY05 Activities: Demonstrate key components (IR imaging, radiant tube enhancements) retrofitted to a refinery fired heater.



### **Participants:**

- **≻TIAX**
- **≻**ExxonMobil
- ➤ Callidus Technologies
- ➤ Norton Engineering





### **Barriers**

- Cost of air preheating systems
- Impact of air preheating on NO<sub>x</sub> emissions
- Achieving stability and ultra-low NO<sub>x</sub> in natural draft burners over a wide range of fuel gas compositions

### **Pathways**

- An integrated system is being developed, incorporating:
  - Ultra-low emission burners developed through CFD modeling
  - Modular, integrated heater design optimized for the burners
- To capture near-term benefits, system components are being designed for use in retrofit applications.

### **Critical Metrics**

- Fired heater thermal efficiency > 95% (LHV)
- ➤ NO<sub>x</sub> emissions < 10 ppm</p>
- Return on investment meeting industry standards

| Benefits                  | 2020 <sup>1</sup> |  |
|---------------------------|-------------------|--|
| Energy savings            | 84 trillion Btu   |  |
| NO <sub>x</sub> reduction | 150,000 tons      |  |
| Carbon reduction          | 1.3 MTCe          |  |
| Cost savings              | \$1.5 billion     |  |

1. Proposal estimates, updated 10/03 by Energetics







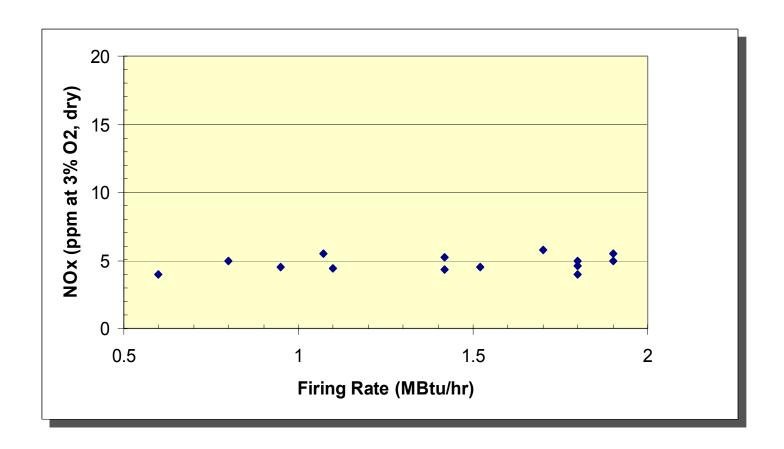
- 1 Advanced Process Heater Overview
- 2 Burner Development/Demonstration
- 3 Advanced Heater Design
- 4 Technology Demonstration Plans
- 5 Project Benefits







### A flexible 2 MBtu/hr prototype was designed and built by TIAX.


- The prototype design was optimized through chemical kinetics and computational fluid dynamics (CFD) modeling.
- The burner was tested in both TIAX's Industrial Test Furnace and Sandia's Burner Engineering Research Lab.
- This Initial work was funded by the Gas Research Institute.







A comprehensive parametric assessment of the effect of burner design parameters on flame stability and emissions was conducted.







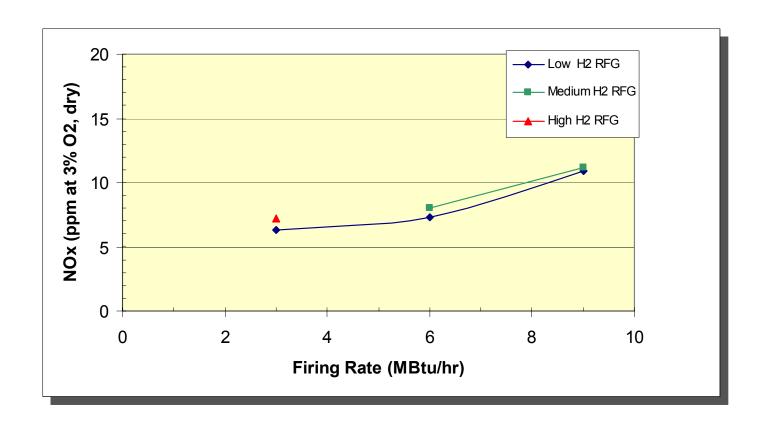
# Scale-up of the burner to 9 MBtu/hr was successfully completed at Callidus' test facility.

- In-flame data from Burner Engineering Laboratory were used to develop a reacting flow CFD model of the burner.
- The CFD model was used to develop design options for the full-scale burner.
- A detailed mechanical design for the full-scale burner was developed.
- A prototype full-size burner was built and tested at Callidus.
- The technology was patented by Callidus.








- Primary fuel jets are optimized to entrain flue gas and mix prior to ignition.
- Secondary fuel jets are optimized for entrainment, stability and NOx control.
- A robust flame stabilizer is incorporated.







# $NO_x$ emissions of 7-11 ppm were achieved for a wide range of fuel gas compositions in Callidus' test furnace.

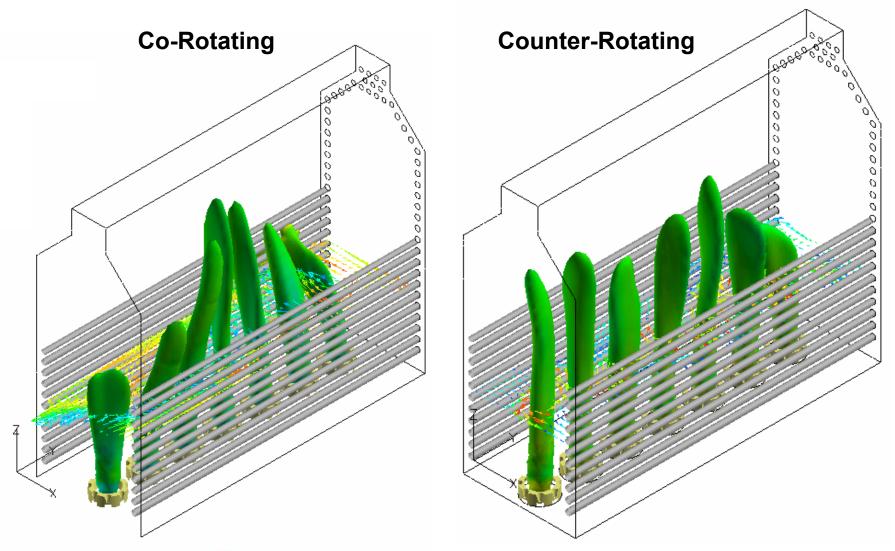








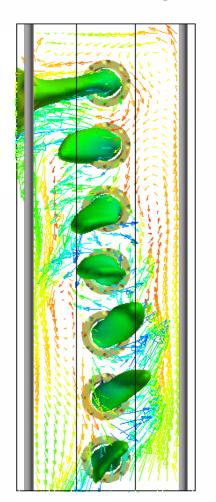
# A refinery process heater was retrofitted with the project's burner technology.


- An atmospheric pipestill furnace at an ExxonMobil refinery was selected to demonstrate the project's burner technology.
  - Horizontal tube cabin configuration
  - 125 MBtu/hr higher heating value (HHV) maximum firing rate
  - Fuel gas composition varied from high methane to high hydrogen
- A computational fluid dynamics model was utilized to predict radiant section performance and thereby identify potential problems.
  - Flue gas flow patterns
  - Flame geometry

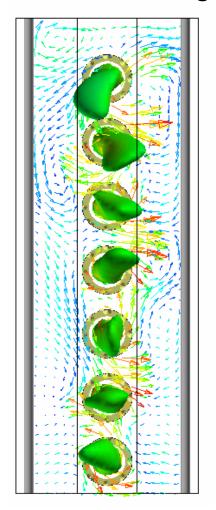







### **Burner Demonstration** CFD Modeling








### **Co-Rotating**



### **Counter-Rotating**







### **Burner Demonstration** Retrofitted Burners in Operation







### The demonstration process heater was successfully operated.

- A set of 14 field test burners were manufactured by Callidus for the retrofit demonstration. The fired heater was started-up in May 2001.
  - Flame geometry and flue gas flow patterns were consistent with the CFD predictions.
  - Heat flux profile met specifications.
  - Burner stability was good when fuel composition was within specifications; however, pulsations were experienced when methane content exceeded 85%.
- Temporary gas tips were designed and installed in July 2001 to eliminate pulsation with high methane fuels.
- A new flame stabilizer and gas tips were developed to enhance flame stability and lower NO<sub>x</sub>. These were retrofitted in December 2002.
  - No stability problems.
  - NO<sub>x</sub> averaged about 0.025 Lb/MBtu HHV (22 vppm).
- The new flame holder design is now standard for other CUB installations.







# Callidus has sold over 1400 CUB burners to many oil and chemical companies.

- Heater types include: horizontal cabin, vertical box, and vertical-cylindrical.
- Burner Types include: natural draft, forced draft, low-Btu gas with and without preheated combustion air.
- Emissions of NO<sub>x</sub> range from 5 to 30 ppm.
  - Furnace geometry and burner layout impact NO<sub>x</sub> level.
  - Increased burner-tube and burner-burner spacing favors lower NO<sub>x</sub> levels by improving recirculation patterns in furnace.
- Callidus' field experience in these furnaces has guided the Advance Heater design.
  - Low flue gas temperature at floor is expected to favor lower NO<sub>x</sub> levels.







#### **Table of Contents**

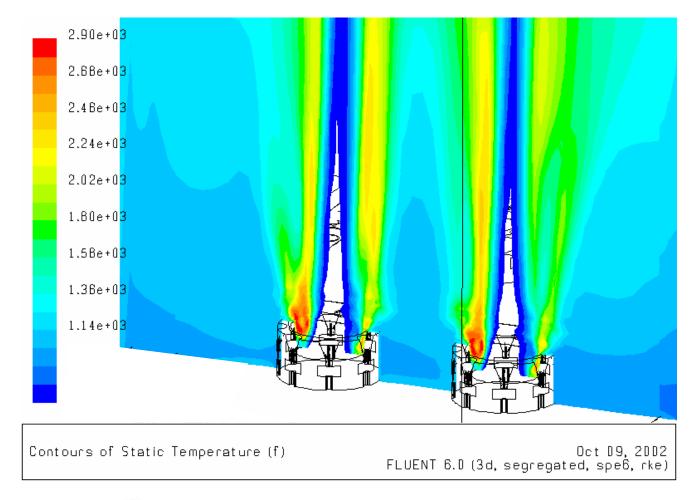
- 1 Advanced Process Heater Overview
- 2 Burner Development/Demonstration
- 3 Advanced Heater Design
- 4 Technology Demonstration Plans
- 5 Project Benefits







# Design options for the advanced heater configuration were evaluated and a detailed design was completed.


- Several fired heater arrangements that can achieve 95% efficiency (LHV basis) were evaluated from constructibility and cost aspects.
- Several new and existing compact heat exchanger technologies were evaluated as combustion air preheater candidates.
- Promising technologies for enhancing radiant and convection heat transfer were identified and evaluated with CFD models.
- A final arrangement was selected.
- A detailed design was completed for a 100 MBtu/hr heat-to-oil vacuum pipestill furnace.
- Total erected cost for the Advance Heater was estimated.







# Design integration of the CUB burners with the advanced heater was accomplished through CFD modeling.







#### Advanced Process Heater Design Features

An economically attractive heater that achieves high efficiency and low emissions was developed through the novel integration of commercial and newly developed components.

- Newly developed components:
  - Ultra-low-NO<sub>x</sub> burners
  - Infrared (IR) imaging system for tube metal temperature monitoring
  - Enhanced heat transfer for radiant section tubes
  - Enhanced heat transfer for convection section tubes
- Key commercially available technologies:
  - Compact air preheater
- Key integration areas:
  - Burner with radiant section geometry
  - Convection section with radiant section and air preheater
  - Flue gas and air ducting with air preheater
  - Structural support
  - Modular design







#### **Table of Contents**

- 1 Advanced Process Heater Overview
- 2 Burner Development/Demonstration
- 3 Advanced Heater Design
- 4 Technology Demonstration Plans
- 5 Project Benefits







#### **Technology Demonstrations** Overview

# Several technology demonstrations are included in the DOE project to validate key Advanced Process Heater components.

- Callidus Ultra-Blue (CUB) burner
  - Completed
- Improved CUB burner
  - Demonstration planned at Callidus in 4Q04
- Radiant tubes with enhanced heat transfer
  - Demonstration in retrofit refinery heater radiant section planned in 2005
- Tube metal temperature monitoring with low-cost IR imaging
  - Monitoring in a refinery heater is ongoing in 2004 and continues in 2005

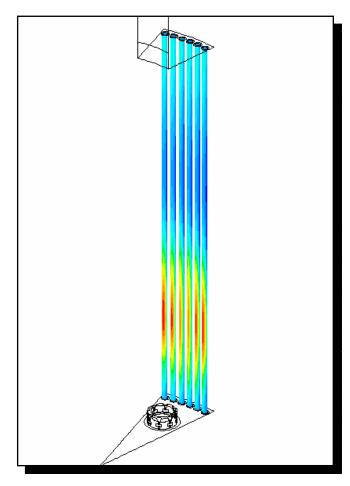






## A new tile configuration has been developed to improve performance of the CUB burner.

- Improved stabilization mechanism and increased mixing rate of flue gas with combustion air could yield:
  - Lower NOx
  - Shorter flame
  - Smaller tile diameter
- Prototype tile is being manufactured by Callidus.
- Testing at Callidus is scheduled for October 2004.

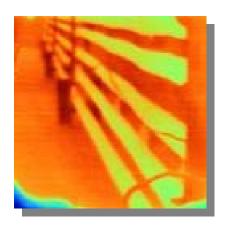







# Enhancing heat transfer to radiant tubes can improve process heater performance.

- Reduced peak heat flux levels can provide:
  - longer run length, due to reduced coking rate
  - longer tube life, due to reduced metal temperature
  - increased production rate
- Reduced flue gas temperature at floor of heater can lower NOx emissions from ultra-low emission burners.
- The demonstration is not likely to start until late 2005.








# Development of Advanced Tube Metal Temperature Monitoring can increase reliability and improve performance.

- Currently, Tube Metal Temperature (TMT) monitoring on fired heaters typically consists of:
  - Thermocouples welded to a few tubes at selected locations, providing continuous data for monitoring and alarming
  - Periodic broader surveys of TMTs via portable IR imaging cameras through available observation doors in firebox
- Reliability and operational credits can be realized through continuous monitoring of TMT at more tube locations.
  - Adding more welded TMT thermocouples is too expensive
  - Mutiple, permanent IR imaging cameras undemonstrated and, in past, thought to be too expensive
- Recently a low cost IR camera was identified.
  - A hand-held camera has been commercialized but further development is needed for permanent installation on a fired heater
- Initial screening demonstration was completed in 2004. The retrofit demonstration is planned for 2005.







#### **Table of Contents**

- 1 Advanced Process Heater Overview
- 2 Burner Development/Demonstration
- 3 Advanced Heater Design
- 4 Technology Demonstration Plans
- 5 Project Benefits







# The Advanced Heater design provides economic and emissions incentives relative to conventional fired heater technology.

| Fired Heater<br>Type            | Efficiency | Heat Fired            | Total<br>Erected Cost | NOx<br>Emissions | CO <sub>2</sub><br>Emissions |
|---------------------------------|------------|-----------------------|-----------------------|------------------|------------------------------|
| - 3 P C                         | (%, LHV)   | (MBtu/hr,<br>LHV/HHV) | (normalized)          | (Tons/yr)        | (kTons/yr)                   |
| Conventional                    | 83         | 120/132               | 100                   | 11.5             | 73                           |
| Conventional with Air Preheater | 90         | 111/122               | 146                   | 16               | 67.5                         |
| Advanced with Air<br>Preheater  | 95         | 105/115               | 148                   | 7.5              | 63.5                         |

- The Advanced Process Heater's return on incremental investment (based only on fuel cost savings) meets typical industry requirement at a fuel cost of about \$3.50/MBtu.
- NO<sub>x</sub> and CO<sub>2</sub> credits can increase the economic attractiveness of the Advanced Process Heater.



